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Synopsis 

Graessley's theory of entanglement was applied to  several model distributions. The 
distribution functions chosen were such that the differential weight distributions were 
triangular with respect to a log molecular weight axis. The molecular weight level, 
breadth of the molecular weight distribution, skewness, and blending of simple distribu- 
tions were studied in their effect on the steady-state flow curve. The governing factor 
for the shape of the reduced flow curve was shown to be Bz+ @Jam2. Other general 
features of the flow curve predicted by Graessley's theory were discussed. 

INTRODUCTION 

Molecular weight and molecular weight distribution are known t o  have a 
profound effect on the steady-state flow curves (viscosity q versus shear 
rate +) of polymer systems. Many approaches, both theoretical and 
empirical, have been used to  relate features of the molecular weight dis- 
tribution with experimental viscosity-shear rate data.'-' 

It is been found experimentally that  a large number of polymer samples 
having similar-shaped molecular weight distributions can be made t o  
conform to  a single flow master curve, provided suitable shift factors (such 
as the zero-shear viscosity and characteristic shear rate yo) are used.8 On 
the other hand, a multiplicity of such master curves must be used if the 
distribution changes, either by broadening or multicomponent blending. 
It has thus been recognized that  the form of the master curve itself depends 
on the molecular weight distribution. Both qo and yo are also known t o  
depend on both molecular weight and molecular weight distribution.'j 

The mechanisms, on a molecular scale, which give rise to  non-Newtonian 
behavior, are still only imperfectly understood. In  spite of some observed 
discrepancies for some polyrners,'j Graessley's entanglement theory pre- 
dicting the viscosity-shear rate dependence of polydisperse polymers' is a 
plausible approach to  understanding the molecular dynamics of such 
systems. The purpose of this paper is t o  apply the theory to  simple 
model distributions to  determine the effect of molecular weight distribution 
on steady-state flow curves. 
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THEORY 

Graessley’s entanglement theory can be used to  calculate a viscosity- 
shear rate master curve for any given distribution of molecular weights. 
The curve is given in reduced form, that is, in the form a/qo as a function of 
1;r0/2. Knowledge of a. and ro is additionally required to  match an ex- 
perimentally observed a-versus-? curve. 

Let P(n)dn be the number fraction of polymer chains having lengths 
between n and n + dn. The reduced viscosity q/qo is defined in terms of 
communal averages of certain parameters h and g. Define’ 

n2P(n)dn (1) 

nP(n) dn (2)  

and 

then 

Now 

h I Q v 2  

71/10 = - ’ Q 

and the parameter 8(-i,n) is implicitly defined by 

The computer program required to  evaluate 7/17,, as a function of y r O / 2  
has been described 

RESULTS AND DISCUSSION 

Reduced flow curves (a/ao versus +70/2) were computed for model tri- 
angular distributions. For ease of visualization, the distributions are 
taken with an elution volume (V)  base and treated as though they were 
molecular weight distribution curves for linear polymers obtained from 
gel permeation chromatograph (GPC) data. A calibration curve relating 
the logarithm of molecular weight and elution volume (similar to  that used 
in our laboratories for linear polyethylene) was used to  obtain molecular 
weight data : 

log10 M = 5.00 - 0.282 (V - 28) .  
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TABLE I 
Molecular Weight Averages 

Condition: Variable Mol Wt Level, Constant Breadth 
High Mol Wt 11.3 10.8 4.37 7.34 9.52 
Medium Mol Wt 3.09 2.95 1.19 2.00 9.52 
Low Mol Wt 0.844 0.804 0.325 0.546 9.52 

Condition: Variable Breadth, Constant Peak Mol Wt 
Broad 1.46 6.26 4.24 7.34 
Medium 3.09 2.95 1.19 2.00 
Narrow 4.27 2.13 6.45 1.05 

Peak 1-Skewed 

Symmetric 3.09 2.95 1.19 2.00 
Peak Skewed 

to  Low Mol Wt 2.65 2.57 1.17 2.00 

Condition: Skewed, Constant Width at Base 

to  High Mol Wt 3.55 3.44 1.22 2.01 

Condition: Blends 
50:50 High:Low 

Mol Wt 2.54 3.59 1.93 3.64 
20% High Mol Wt 3. &1 5.28 1.56 2.16 
10% High Mol Wt 3.43 4.11 1.43 2.11 
Base Distr. 3.09 2.95 1.19 2.00 
10% LOW Mol Wt 2.22 2.66 1.19 2.00 
20'30 LOW Mol Wt 1.73 2.37 1.18 2.00 

42.9 
9.52 
4.99 

9.68 
9.52 

9.68 

14.1 
13.7 
12.0 

12.0 
13.7 

9.52 

27.5 
27.5 
27.5 

79.5 
27.5 
14.9 

20.8 
27.5 

35.7 

54.5 
12.1 
17.8 
27.5 
33.6 
42.1 

Molecular weight averages obtained using this calibration are summa- 
rized in Table I. These averages and the calibration itself should be taken 
only in a relative sense, as a simulation of a typical polymer system. The 
use of a different calibration would not alter the essential results of this 
paper. 

They were 
chosen t o  cover molecular weight level, breadth of molecular weight dis- 
tribution, asymmetry (skewness) in the distribution, and blends or com- 
posite distributions. 

Graessley has suggested2 that the shapes of the reduced flow curves are 
influenced by a high-moment polydispersity index, such as MZ+1* Wz/&Twz. 
The flow behavior of polyisobutylene solutionsg has been shown to  depend 
on the high moment molecular weight, M,+l. M , / M w .  Kataoka'O found 
a correlation between the eritical shear stress for onset of non-Newtonian 
flow and the same high-moment molecular weight for poly(dimethy1- 
siloxane). We shall present evidence that  the shapes of the reduced flow 
curves are indeed governed by the high-moment polydispersity index, 

Effect of Molecular Weight 

The distributions used are plotted in each section below. 

ATz+ 1 .  MZ/XW2. 

The three distributions shown in Figure 1 have the same distribution 
The three distributions breadth and differ only in molecular weight level. 
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Fig. 1. Distribution functions for molecular weight level effects: (---) high molec- 
ular weight; (- - -) medium molecular weight; (-- -) low molecular weight. 

LOG()sro /2 1 

Fig. 2. Flow curve obtained a t  constant distribution breadth at various molecular 
weight levels. 

give an identical response, namely, a single reduced-flow curve (q/qo versus 
y70/2), shown in Figure 2. This apparent independence to molecular 
weight level predicted by theory has been shown t o  agree with experimental 
data2 for rather narrow (Mm/Mn= 1.01 t o  2) molecular weight distribution 
(MWD) samples. 

For resins having a broad MWD, this independence has not been proven 
experimentally. It is difficult t o  obtain samples having identical broad 
MWD and differing only in molecular weight level. The reducing param- 
eters qo and T~ arc both highly molecular weight dependent. The influence 
of molecular weight level on experimental viscosity-shear rate data is felt 
through these parameters. 

For all three of the model distributions, f l z + ~ . & ! z / ~ w 2  values are, of 
course, the same. 
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Effect of Breadth of Molecular Weight Distribution 

Figure 3 shows three symmetrical distributions having the same peak 
molecular weight and differing only in distribution breadth. The poly- 
dispersity index M,+l .M, /M,2  has a value of 79.5 for the broad distribu- 
tion, 27.5 for the medium-breadth distribution, and 14.9 for the narrow 
distribution. 

The onset of non-Newtonian flow and the general shape of the reduced 
flow curves for these three distributions are in agreement with general ex- 
pectations. These are plotted in Figure 4, along with calculated flow 

ELUTION VOLUME ( V )  

Fig. 3. Distribution functions for effects of breadth of distribution (at constant peak 
(-) broad distribution; (- - -) medium breadth of distribution; molecular weight): 

(---- ) narrow distribution. 
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Fig. 4. Flow curves obtained at various breadths of molecular weight distribution: 
(-) broad; (---) medium; (------ ) narrow; (---) most probable distribu- 
tion; (-.-- ) monodisperse case. 
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curves for monodisperse (M,/Mn = 1) and most probablc (M,/M, = 2, 
Mzfl. Mz/lClw2 = 3) distributions, for comparison. There are two points of 
interest t o  note. The first of these is that the effect of MWD on the shape 
of the flow curve decreases as MWD broadens. The largest changes in the 
shape of the flow curve take place as we go from the monodisperse case to  
the most probable distribution case to  the narrow distribution. Much 
greater degrees of broadening are required to  achieve similar change& a t  
broad MWD. 

It is most 
apparent if the monodisperse flow curve is compared with that for the 
most probable distribution. To the best of our knowledge, this feature in 
conjunction with Graessley's theory has not been pointed out in the litera- 
ture. 

We have carried out calculation well beyond the crossover shear rate 
and found that this is a general feature of the theory, i.e., a narrow MWD 
flow curve eventually crosses over the flow curve of a broad MWD polymer 
in the extended shear rate range. Although experimentally i t  may be 
difficult t o  prove this point because of melt instability (e.g., inlet fracture 
and land fracture") exhibited by polymers, this point should be pursued 
further. 

For the monodisperse distribution, Graessleyl has shown that the limiting 
slope at  high shear is -9/11. The flow curves shown in Figure 4 suggest 
that the limiting slope for other distributions may be different. An analy- 
sis was carried out which shows the limiting slope is -9/11 for all distri- 
butions. 

The second point is the suggested crossover of flow curves. 

The analysis is given in the Appendix. 

Skew Distributions 

Figure 5 shows two skew trianglar distributions, one skewed to  high 
molecular weight and one to  low molecular weight. These distributions 
are shown with a symmetrical triangular distribution having the same base. 
The calculated reduced-flow curves are shown in Figure 6. An interesting 
feature of these skewed triangular distributions is the fact that M,/M, for 

ELUTION VOLUME ( V )  

Fig. 5. Skew distribution functions (-) skewed to  high molecular weight; (---) 
symmetrical; (-- -) skewed to low molecular weight. 
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Fig. 6. Flow curves for skew distribution functions: (--) skewed to high molec- 
ular weight; (---) symmetrical distribution; (-- - ) skewed to low molecular 
weight. 

both are identical, having a value slightly higher than that for the sym- 
metrical distribution. On the other hand, M,+l .M, /M,2  increases as we 
go from the skewed high through the symmetric to.the skewed low distribu- 
tion. A parallel trend can be observed in the shape of the reduced flow 
curve (Fig. S), as is observed for the narrow to  the broad distribution dis- 
cussed above. 

Composite Distributions 

A method of practical importance for modifying distributions is by 
Figure 7 shows a 50/50 composite distribution of two com- blending. 

ELUTION VOLUME ( V )  

Fig. 7. Distribution function for 50: 50 blend of two components having different 
(-) blend; (---) molecular weight levels, but the same breadth of distribution: 

individual components. 
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LOG ( t T, / 2 ) 

Fig. 8. Flow curve for 50:50 blend: (-) blend; (---) components. 

ELUTION VOLUME ( V )  ELUTION VOLUME ( V )  

Fig. 9. Distribution functions for blends: (-) blend; (---) components; 
(a) 10% high molecular weight; (b) ZOOJ, high molecular weight; (c) 10% low molecular 
weight; (d) 20% low molecular weight. 

ponents having different molecular weight levels with the same breadth 
MWD. The corresponding reduced-flow curves are shown in Figure 8. 
The calculated results are as expected. 

Incorporation of 
10% to 20% of high molecular weight components and of lo%, and 20% of 
low molecular wcight components was studied. The reduced-flow curves 
are shown in Figure 10 for these composite distributions. Here againithe 

Figure 9 shows the distributions for several blends. 
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LOG ()ire / 2  1 

Fig. 10. Flow curves for blends: (---) 20% high molecular weight; (---) 
10% high molecular weight component; (--) unblended parent distribution; 
(- . - . - . - ) 10% low molecular weight component; (-.-.- ) 20% low molecular 
weight component. 

shapes of the calculated flow curves are strictly governed by M,+I. M,/ 
Mw2 and not by Mw/M,.  Experimently, however, almost exactly op- 
posite behavior has been observed by Nakajima and Wong.'j Their work 
was carried out using a medium molecular weight linear polyethylene as 
the base with up to  30% of a high molecular weight or up to  20% of a low 
molecular weight linear polyethylene added. Their results show that the 
addition of the high molecular weight component affects the shape of 
the flow curve in the direction of broader distribution. The addition of the 
low molecular weight component was shown to  have no appreciable effect 
on the shape of the flow curve. Unfortunately, we do not know any molec- 
ular weight averages for their polyethylene samples. Therefore, the 
values of Mz+l -  M , / M w z  are not known. 

CONCLUSIONS 

Through use of the model distributions i t  was shown that the shape of 
the reduced-flow curve predicted by Graessley's theory is governed by the 
high-moment polydispersity index, Mz+ M z / M w 2 .  The commonly used 
polydispersity index, Mw/M, ,  shows an opposite trend for some cases 
studied here. 

Calculation in the extended shear rate range showed as a general feature 
of the theory, a crossover of flow curves, and a constant limiting slope of 
-9/11. 

Appendix 
The equation of the line of limiting slope for polydisperse polymers can be derived as 

follows: 
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For large el the g and h functions given by eqs. (5) and (6) in the text become, in the 
limit, 

16 
h(+,n) = h(e) = - 

3dd' 

We next take eq. (7) in the text and separate it into an q,+-dependent factor and molec- 
ular weight factors 

where 

and 

RY) = 

Finally, eq. (4) in the text can be written in full: 

!L- - 
7 0  

Eliminating h(+,n) between eqs. (2) and (3) gives 

which can be rearranged to give 

(5)  

Substituting this expression* for @ into the h term in the expression for h gives 

n'/aP(n)dn 

n2P (n )dn 

1 /4  n , v z  
S,- f P(n)dn 

16 h = -. 
3* lm nzp(n)dn 

(9 1 =(:) * F K I a / 4 .  l- 
Substituting for f ;  in eq. (4) gives 
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or equivalently 

From eqs. (11) and (8), eliminating F ( + ) ,  

m 

nP(n)dn 

n'/'P(n)dn 
e(+,n) = - a  -. - ]n'/z = G(+).n'/'. (12) 

Using eq. (12) for e, h(e) and g(e) can be evaluated from eqs. (1) and (2) and substi- 
tuted* into eq. (6): 

lm n'/'P(n)dn lm n * / ~ n ) d n  im nP(n)dn 

(13) 
$1, 16 2 G(+)'/Z = (:) .-. 

VO 3r Lmn2P(n)dn Lm n'/gP(n)dn lm n'/sP(n)dn 

or 

Finally, substituting for G(+) from (12) gives 

This is the equation of the line of limiting slope. Thus, regardless of polydispersity 
effects, the limiting slope is -9/11. 

The authors are grateful to Dr. W. W. Graessley for supplying the computer program 
used in this study. 

* The assumption is implicit here that both F(+)  and G(+) are large enough that the 
large &condition required for eqs. (1) and (2) is not violated, regardless of the value 
assigned to. The assumption is required in order that the integrals may be evaluatd 
over the complete range of n values. In practice, n does have a lower limit, which can 
be made equal to 1, representing unit or monomer chain length. Both F(+) and G(+), 
and thus @(+,n), can then be made as large as desired by increasing +, provided that the 
limiting slope lies between 0 and - 1, i.e., that the reduced shear stress V / V O *  +70/2 always 
increases with increasing shear rate +. 
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